

Model-independent searches for new physics in multi-body invariant masses

S.V. Chekanov, S. Darmora, C.E.M. Wagner, J.Zhang

Snowmass EF09 group May 29, 2020

LOI: https://www.snowmass21.org/docs/files/summaries/EF/SNOWMASS21-EF9-TF7-009.pdf

BSM searched in 2-body decays

- No signs of exotic new physics have yet emerged
- Canonical observations of "bumps" in invariant masses focus on 2-body decays (dijets, di-leptons, di-photons etc)
 - requires very precise knowledge of SM background (~0.1% level)
- Searches in 2-jets limited by:
 - Jet triggers → use large invariant masses (mjj>1 TeV)
 - Statistics → use ISR objects to look at medium masses (mjj>250 GeV)
 - MC simulations for bkg. → restrict searches to Γ/M < 0.2 and apply data-driven techniques for background estimates (smoothing, function fits, etc.)

Dijet data are less explored for Mjj<1 TeV and for broad states (for any mass)

→ data/bkg < 0.1%
</p>

Limitations of LHC & Other opportunities

- Limitations for searches in 2-body decays:
 - Low invariant masses m(jj)<1 TeV → Trigger limitation
 - Broad resonances Γ/M > 0.2 (CMS ~0.3) → Monte Carlo limitation etc.
- What if BSM is more complex than we think? → Look at N-body decays closely?
 - ~20 existing publications with 2-jet (gamma, leptons) masses
 - ~4 (only!) publications with 3-body invariant masses
- There is a class of BSM events with cascade decays that cannot easily be found in 2-jet masses (due to large width, low masses etc.), but they still can be probed using 3-body or 4-body decays
- Such class of events can be studied without limitations from:
 - Event trigger (3rd object which can be photon, electron, MET, jets)
 - Monte Carlo for background hypothesis
 - Data control regions are trivially constructed by inverting requirements

Example: s-channel in SSM

Direct observation of X via 2-body decays can be difficult if:

- broad resonance with $\Gamma/M > 0.2$
- low-mass resonances < 250 GeV
- large background for inclusive dijet searches

If X' narrow, this model can be identified via M(jj+I+MET)

General searches: $X \rightarrow A+B$ where A and B are unknown

Stay agnostic about the nature of A/B and look at the following invariant masses:

- M(jet jet lepton±)
- M(jet jet jet lepton±)
- M(jet jet lepton+ lepton-)

Possible physics scenario: 2HDM, Graviton models, radion, SSM etc.

If partial width of X is small, peaks in 3- and 4- body invariant masses can be observable even when A/B cannot be observed using 2-body decays due to (1) large width (2) small masses or (3) large background for inclusive searches

3 and 4 body decays

Summary & Work plan

- LHC data have not been fully explored in multi-body invariant masses with the same precision as in published papers with 2-body masses
 - "a gold mine" for possible observations
- Experimental searches in multi-body decays can be done without background MC since many control regions can be constructed using data (unlike 2-jet studies)

Work plan:

- Identify benchmark BSM models which can be probed with this method
- Focus on $X \rightarrow A+B$ where:
 - **X** is narrow (Γ/M < 0.2)
 - A and B decay as 1→2, may not need to be SM particles
- Create Monte Carlo simulations, study 3- and 4-body invariant masses, and estimate QCD multijet background

3 and 4 body decays